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Abstract

In an earlier paper (Tjostheim 1984a) a general framework was
introduced for analyzing estimates in stationary nonlinear time
series models. In the present paper the framework is enlarged to
include certain nonstationary and nonlinear series. General conditions
for strong consistency and asymptotic normality are derived both
for conditional least squares and maximum likelihood type estimates.
Examples are taken from threshold autoregressive, random coefficient
autoregressive and doubly stochastic (dynamic state space) models. The
emphasis in the examples is on conditional least squares estimates.
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1. Introduction

The assumption of stationarity imposed in Tj~stheim (1984a)

*(hereafter referred to as Ti) is sometimes too strict. In this paper

we will try to extend the general framework established in T1 to

some classes of nonstationary models. We will only treat certain

types of nonstationarity, such as that arising from a nonexisting

stationary initial distribution, or the nonstationarity arising from

a nonhomogeneous generating white noise process {etI. le will also

briefly look at autoregressive (AR) models, where the AR coefficients

are deterministic functions over time.

The approach to proving consistency and asymptotic normality is

. similar to the one used in Ti. We rely on Theorem 2.1, but need a

" . scaled version of Theorem 2.2 of that paper. The ergodic theorem

- and the Billingsley (1961) central limit theorem for an ergodic

-strictly stationary martingale difference sequence will not be

available any more, and, as a consequence, a heavier use of pure

martingale arguments (mainly martingale type almost sure convergence

and central limit theorems) are necessary to obtain our results.

The results are not complete, and our examples are not as general

as in Ti, but we believe that they are representative at least for

some of the difficulties arising.

2. Conditional least squares.

Throughout the paper we will use the same notation as in Ti.

Thus we let {Xt . tcI} be a d-dimensional discrete time stochastic

d
process taking values in R and defined on a probability space

(Q2,F,P). The second moments of {X } will be assumed to exist. The

t

index set I is either the set of all integers or the set of all

4-' .
V 9 %
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positive integers. We denote by F the o-field generated by
t

IX, s<t} and by Xt tl(B) the conditional expectation E (Xt IF X

which depends on an r-dimensional parameter vector 6. As in TI,

we will often suppress in our notations. Moreover, we denote by

ftt-l ftit-l(8) the dxd conditional prediction error covariance

matrix defined by

ftit-l=E{(Xt-Xtit-l)(Xt- Xtt-) IF t-1(2.1)

We assume that observations (Xl,..,Xn) are given, and we intend

to estimate B by minimization of the conditional least squares

penalty function given by

*% nQn(8) = 2Xt-X tl (6) ,  (2.2)
n t=m+l

where 1"1 is used to denote Euclidean norm, and where in practice

the lower sumation limit has to be chosen so that X m+lims well-defined

in terms of the observations (X1 ... X n). Unlike the case of consistency

for stationary series in Tl, it will not be possible to condition

on FXl(m), which is the a-field generated by {X , t-m<s<t-1}. This is
- I s

.. because we will rely more on pure martingale arguments, and then we

need an increasing sequence of a-fields. Hence, in this paper we will

* always condition with respect to F X . For autoregressive type

processes of order p it will then he possible to express Xmilm

in terms of (X )if min(nm) p.-, n

" "[he following two theorems correspond to Theorems 3.1 and 3.2 of

. T1. We denote by C" the true value of

Theorem 2.1: Assume that X is a d-dimensional stochastic

process with V, X t ,and such that Xtl t 1 ( t-) = t. IF t 1  is almost surelytwic coninuusO, 1 . "oe srel

differentiable in an open set N containinp t"0  "orecver,

asstue that there are two positive constants M1 and M, such that for t>m.l

* -. . . .

r. , ', , .. . .. .,, . ... ...... ., . .. . ... ,. .. .,, .. .. ..,. ,, .. , .,.,e .. ,, ,, e.,... e ,,.,.e%. % , -, e%
2 %.', e'"&. '¢€..ii'f;C'2'2 €"'€" r€""'- '.e." -' -,% , .. •% e..,€e ,.,€, -

..... 9 .nn- P~li i lml ll~li
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T  
_

CNl: E (0) ftt 0(SO) < M

as. tit-l aS.

and

" -'.CN2: El T I~ j( O  ttlB ) 3i8 B <M

CN3: lim inf Xmn( 0) a,. 0
min

n 0)
where X mn ( ) is the smallest eigenvalue of the symmetric non-

minoo4'',. n ( 0)
negative definite matrix A ( ) with matrix elements given by

n 0 1 n aX t 0 tO (2.3)A o n ai (B°  (2.3
:".-" ij( O  =m+l

0
CN4: Let N = {: la-B < 61 be containedin B. Then

-1-n n 0 n trli sup 6-1 A . . ( + A. t- XT tIt- (1 )
n-- n- 64 0 iJ t=m+l{1 i

X U a2Xt

t ttt)l s.

for i,j=l, ...,r.

Then there exists a sequence of estimators s Thatn nl'* 'nr~ uhta

8 s. and such that for c > 0, there is an event in (0,F,P)
n

with P(E) > 1-c and an n such that for n > no, aQn(Bn)/asi 0,0,'

i=1,...,r, and Q attains a relative minimum at Bn n.

Proof: From the definition of Qn(S) in (2.2) it is easily seen that

DO n(a)/aR iFn I is a zero-mean martingale. The increments

Ut = aQta i - aQt-l/ai are such that (using CNI)

... ... • "-.,......."...... ..



i ti- (60 (B 0 ) (2.4)

and it follows from a martingale strong law of large numbers (cf.

0 a.s.
Stout 1974, Th. 3.3.8) that n %()/ i  0 as n and Al

of Theorem 2.1 of Ti is fulfilled. Computing second order derivatives

we have

n 3x.n_ t t-l tt- 2 tT-1 (X -
t m+1 V V. t- tit-i~ (2.5)

.,--' 1 3ij -2t=m+l ,3i 3g t=m+l  .?¢ x-ttl.(.)

Here {2XtT t ()/i [x -xt A(0)]} defines a martingale difference

x
sequence with respect to {F } and using CN2 while reasoning as above

*we have

2____o an aXI 1  axI 1  a.s.
1 -2n 0 2 n  xt~t-i 0 xtlt-1 0 a s

t=m+l 0 (2.6)

as n-, and hence CN3 implies A2 of Theorem 2.1 of TI. Using (2.5)

it is seen that CN4 is identical to A3, and the conclusion now follows .

from Theorem 2.1 of Ti. I "

The conditions CNI and CN2 may be weakened in two directions.

According to Theorem 3.3.8 of Stout (1974), Mi, i=l,2, may be replaced
CL.

with M.t with O<c.<l, i=l,2, allowing a moderate growth of moments

with t. Using Corollary 3.3.5 of Stout (1974) it is seen that another

possibility is to replace CN1 with

Et t (a (50)X-x (0)}[log+ xtltl.O){xttt(0< _M (2.7)
1[ <iiI --1  1

for 1=1,...,r for some c > 0 and CN2 with the obvious analogue.

When we now turn to the asymptotic distribution of Bn, we cannot

rely on Billingsley's (1961) result for ergodic strictly stationary

martingale difference sequences which was used in Theorem 3.2 of TI.

However, there are more recent results from martingale central limit

0*0

P- ,,-f - .. . .I.. .. . . . .. -,
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theory that can be applied. ypically these require a random scaling

factor.

Let aX t t 1/ 3 be the dxr matrix having DX tjt/aB., i=1,.,r, as

its column vectors and let R be the rxr symmetric non-negative
n

definite matrix given by

n aaR n 1X tit fttt (2.8)

r n = O t-i It-1
t=m+l

Moreover, denote by T the stochastic rxr symmetric non-negative
n

definite matrix defined by .-

n ax t-l axt it.
nT = a "(2.9)t=m+l

We will denote by A the Moore-Penrose inverse of a matrix A and

0
by det(A) the determinant of A. Then we have

Theorem 2.2: Assume that the conditions of Theorem 2.1 are fulfilled

and assume in addition that

-r
DNI: lim inf n det{R (0°)} > 0

n - on
and Tn

ad 0 0 F ax -X t ( 0  0ttt (B0)}T

-N2: R_ (B )I X. N .(

n~ (BOl a6 t-.

W 0 R (0) -+ I"
jn r

:
where I is the identity matrix of dimension r.

r

Let be the estimators obtained in Theorem 2.1. Then

- ( 0 00 d
Rn (B)tn( )6 -0O ) N A(,I ) (2.10)
n n n r

tP

%- %~ .% N
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0
Proof: Note first of all that R (B is finite from CNI. Let

nn
3Qn n a

A S = t (XX ) 1(211a329 = n a6 t tt-1 t 2.1

'.

t=m+ltml

Since we are dealing with an asymptotic result, as in the proof of Theorem 2.2 of

Klimko and Nelson (1978), we may assume that S n 5n )=O. Taylor
0 1"

* expanding S about o and subsequently normaliting with R(
n n

we have

o -~ as A

0 =R n(6 0)S (0 + R- 2(S0) nl(,_)(, 0) (2.12)n n n n n

where -is an intermediate point between n and . Again,
nn

reasoning as in the proof of Theorem 2.2 of Klimko and Nelson (1978),

in the limit as n wc * by Moreover, using DN,
n

the houndedness condition CN2 and the orthogonal increment property

of a martingale difference sequence, it follows from Chebyshev's

inequality that there exists an n 0 such that

F(.)n S() Sn

0 a-.O 0 1 13"

n n O  tm l -R P--( E{ ( 0) 1 (2.13)

whr n i n inreie pon btee n

AP

is bounded in probability for n>n .2Since, from Theorem 2.1, 978),

n'

0 0 n
it follows that F n C - 0, and therefore, when taking

distributional limits in (2.12 ene, )as nos may be replaced by

inquliy ha tereiss n o suhthtn

0 ln02- 0 f
R o E a B°) )- E- R-((5 )T(t_ (2.14)

t m~l

i oand hence from (2.10) and (2.12), the theorem will be proved if we

10  n 0  Pd.

can prove that R(U )s( ) (O,lk
n n r

We use a Cramer-Wold argument. For an r-dimensional vector X

of real numbers it is sufficient to prove that

V- 4"

.-:. .. .. . .. . . € .. .. .. . . 4

t '€ ' • ' .. ,,..•"''''I' .., -,,'".i,.,.''".•¢ - ., ," ''' '' •"". ' "-"""'"'
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Xd B) N(oXTX). (2.15)

For this purpose we introduce

T
T 9X

T-1 tjt-l -

T n 0
Then X R_ S = tn and for I3=f we have that n m+l.zt<n, are

n n t-m+ltn
martingale increments for a zero-mean square integrable martingale

i
arry .. =~' tn~m+1!5i~n. It is then sufficient to verify the
in

t ~m+ I
following conditions (cf. Hall and Heyde 1980, Th. 3.2, where the

nesting and integrability conditions of that theorem are trivially

0
fulfilled) for B=

-s p

0i) max R I
m+1:5t~n tn

t=m+l t

2
(iii) E( max ) is bounded in n.

m+l<t<n t

The condition (ii) follows trivially from the definition of t

and the assumption DN2. Moreover,

max 2 2 XTRI r T-R X 2.7
tn- xTR nr t tnm+l! t~n t=in+l nL =_ t tn+2.7

and using the definition of R nin (2.8) we have that the expectation

T
of the extreme right hand side of (2.17) is X X, and (iii) follows

4;. from this.

-~ Also, using the technique described in Hall and Heyde (1980,

p. 53), for a given c>0

* P ( maax 1 I > ~)=P {)y l( t WE)>21(.8

m+l<t<n t m+l

where 1(-) is the indicator function. ButI

t *1
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Y>c) -lXTRnE{ tr I(I1R- ttR- X>F) Rn X, (2.19)

and using the definition of t and the conditions CN1 and DN1 we

have that for a given 6>0, there is an nO such that for n>n0 and all t,

m+l!t-n,

C Rn  ttn R >c < 6 (2.20)

for =6 0  Again using CN1 and DN1 there exists an n such that

IRnl, .. (30 )1 < kn-  for n-nl; i,j-l,...r, and for some constant k. Let
n,iJ

n'= max (no,nl) Then from (2.19) and (2.20) we have for =0and for

* n:-nl

E{n' tn 1 t I >c)} < K(X,k) 6, (2.21)
"" -t=nl '

where K(X,k) is a constant depending on A and k but independent of n.

On the other hand, using CN1, DNI and (2.19) it follows at once that

for 0

.n E{tl(ltni > P)} 0 (2.22)
J t~m+l

4' as n oo o. Using Chebyshev's inequality, (2.21) and (2.22) now implies

(i), and the proof is completed. H

* The matrix R corresponds to the number of observations in the
n

statement of Theorem 3.2 of TI. In the stationary ergodic case
-1 -1a.s.

n R - R and n T U as n 0, where U and R are given by (3.6)
n n

- and condition Dl of Tl, and it is seen that (2.10) reduces to (3.18)

of TI then. However, in the nonstationary case we do not require

the convergence of n R and n Tn, and in fact for the examples to

O be treated in the next section these quantities do not always converRe.
5-. o..

." ."
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*' 9
-. a.s.

If T -U - 0, where U =E(T), then the asymptotic covariance matrix
'n n n

of 3 is given by U -R U which tends to zero by Theorem 2.1.
n n n n

3. Examples

As in TI we will illustrate our general results on a variety

of nonlinear time series classes. The technical difficulties are

larger than in the stationary ergodic case, and, partly to display

the essential elements involved more clearly, we will confine our-

selves to discussing scalar first order AR type models. Extensions p

to higher order and vector models will be relatively straightforward

in some of the cases. As for the examples in T1 we will generally

omit the superscript 0 for the true value of the parameters.

3.1 Threshold autoregressive processes.

These models were originally introduced by Tong (1977) in

connection with the analysis of river flow data. The underlying

idea is a piecewise linearization of the model by introduction of

a local threshold dependence on the amplitude Xt. In the nomen-

clature of Tong and Lim (1980) a scalar SETAR (m,p,... ,p) model is

given by

X = e (3.1)
t i t-i t

fo .... X E F,j=l, ...,m, where F1,...,F are disjointfor -l t-p] T
m

regions of the p-dimensional Euclidean space RP, such thatj.U1F.=RP.

Moreover, {ei}, j=l,...,m, are independent white noise series

consisting of independent identically distributed (iid) variables.

Tong and Lim (1980) consider the numerical evaluation of

maximum likelihood estimates of the parameters of the threshold

model. In a reply to the discussion of their paper they also mention

-,. r . . . * . *$, * * q*.id .. **',. .. ..'.~. .... * " ,.*-
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the possibility of applying the theory of Klimko and Nelson (1978)

to study the properties of these estimates, but we are not aware of

any actual work in this direction.

We will only treat the first order AR case (p=l in (3.1)),

and we will assume that there is only one residual process {e t

consisting of zero-mean iid random variables. We can then write

(3.1) as
m

-t aiI t H (Xt-i) e t (3.2)
j=l

where this equation is supposed to hold for t>2 with X Ias an initial

variable, and where H.(X )= X 1 )bigth niaot-1 (XIi .,l. en h niao

function. There is no explicit time dependence in (3.1) and (3.2).

The reason that we did not treat such processes in connection with

our study of stationary processes in TI, is that we have not been

able to prove the existence of an invariant stationary distribution

for the initial variables in the threshold case (cf. Sec. 4.1 of Ti).

For a general initial variable X it is clear that the process
1

generated by (3.2) will be nonstationary.

-. Theorem 3.1: Let {X I be defined by (3.2). Assume that the threshold

regions F. are such that there exist constants ct.>O so that for all
JJ

*t, E{ X2 H (X )I > a.. j=l,...,m. Moreover, assume that IajI < 1
t it -j

j~l,. ..,m, E(X ) < - and E(e ) <. Then there exists a strongly

consistent sequence of estimators [a a T.., on ".n-" I

a=[a ..,am]T These estimates are obtained by minimizing the penalty

.- function of (2.2), and they are jointly asymptotically normal.

Proof: The system of equations Q 3a Oj=l,. ..,m, is linear in

a....,a and it is easily verified that Q n is minimized by taking
% %I



n I1

2 X t Xtl H (Xt -1)
a -I -2a" t= (3.3)

t=2 r

where this exists with probability one since E{X tjH(Xt)} > c. a
tJ t -J*

Using (3.2) and the independence of the et's we have

~ m D Xtt-
tt-i Xt ( H (3.

tHj(X andl (3.4)
j =1

while higher order derivatives are zero. Also, it is easily shown

that ftit-1 = E (Xt- Xttlt- 1)2IFt -1} = 2 =2 Since 3Xtit/ ] a_

k
does not depend on a , k=l,...,m, it follows that CN2 and CN4 of

Theorem 2.1 are trivially fulfilled. Moreover, using jail < 1,

j=l,...,m, E(X2) < - and E(e2 ) < , it follows from (3.2) that E(X2)<K
t

for some constant K, and that CN1 of Theorem 2.1 holds.

From the special structure of the derivatives given in (3.4)

we have that the matrix An in (2.3) in the present case is a diagonal

matrix and is given by

An = diag{! Xt_lH(X)} (3.5)
n_ 1-l t-1

2and using the assumption E{X H. (X )} > a. we have that CN3 of Theorem
t t - J

2.1 will be fulfilled if we can prove that

• 1 2 1 n 2{ j a.s.SlXtH (Xt) - H H (X 0 (3.6)

for j=l,...,m. This will also be the key relationship used in the

• 0proof of asymptotic normality.

From the strong law of large numbers we have

I I e 2- 2 0 (3.7)
nt= 1 t

noea.
I~i% t4

Ia
a ..... .. . . . .. . ... m.*,

• , * ' ,,"*" 
°
" " " " " / " " "" " %-- %
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as n o. Since Hi (Xt)I (Xt) = 6ijHi(Xt), it follows from (3.2)

that

2 m m 22 = t2 2a2

e X2Y a XtXtH(Xt) + Y (al) Xt Hj(Xt-1) (3.8)et  _ t•- - _

l j=t

Again inserting from (3.2) we have

m m m
aJX X H2 (Xt() et aX H (X ) A U (3.9)

j=1 tt1it-(a)~ xt.41 (t 4 ) e=Y t_ t- t

However, it is easily checked that {U t } is a martingale difference-u t -

sequence with respect to {FI}, and since E(UE) = H (x  ]5K

t t 01 t11  _

for some constant K1, it follows from the strong law for martingalesn a.s.

(Stout, 1974, Th. 3.3.8) that n ut  0. Inserted in (3.7) and
t=2

(3.8) this yields

n n m 2 2 2 a.s.
t2 _t=2j l(a ) t H(xt.l) -H (a 0 (3.10)

nt 2 t2j =i

2 -1 2 a.s.
Since E(X) K for all n, we have n X H.(X)- 0 as n for

m nj n

j=l,...,m. Furthermore, since 1 = H.(X ) an alternative way of
j=l t

writing (3.10) is

m . n 2 a.s.
f{l-(a - Y XH.(Xt) (3.11)

j=l t=" t

On the other hand, since E(Ut) 0 in (3.9), taking expectations in
t

(3.8) and (3.9) and adjusting the summation index as above we have

m 2 1n

_(a)j }n E{X 2 H.(X a - 2 0 (3.12)
j=l t=1 t

as n . Combining (3.11) and (3.12) it follows that

.2mnt2a 1 n m 2} a.s.
1 }[(a )[I X H t( E{X H (Xt _ {l-(a ) )Y. - 0 (3.13)

j=l t=l = j=l

The zero-mean random variables Yjn' j=l,...,m are linearly independent

.,.-1
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for each fixed n. Since hy assumption I aI < 1 for j=l,...,m, the

relationship (3.6) follows from (3.13), and this proves the consistency

part of the theorem.

Turning now to the proof of asymptotic normality, it is not
I

difficult to verify that the matrix R defined in (2.8) in the
n

present case is given by

n 2
Rn = diag[ E{X }] (3.14)

t=2 t (3.14)

and using the assumption E{Xt IH (Xt lui > ae2 for j1 ,...,m it

follows at once that DN1 of Theorem 2.2 is fulfilled. Moreover, the

matrix in DN2 is seen to be given by
n

]~ t 2~e X H (X)

D - diag (3.15)

E{ X 2 if (Xt l)

it=2 -a

Since (e4 ) < and ]a31 < 1, j=l,...,m, there exists a K such that
t "2

E{Xt 4Hj(Xt 1)} < K2 for all j and t, and thus, using that et is indepen-

dent of F we have E[{etXt H(X)} 2 ] KE(e ). From the mart-

ingale strong law applied to the martingale difference sequence

22 2 2
S{etX H (X ) - H x.(Xt)} it follows that

in 2 n a.s.

1 X 2 ) 2  .(. ) . (3.16)
t= t=2

* Using (3.6) and an addition-subtraction argument in (3.15) it follows
a.s.

that D I as n - 0, and thus from Theorem 2.2
n m
.. p..

'%.

"I*1 IIn
:.'

Ql -- ) ' , ' - . . -- . )~ 1. / . . ." ' ". )
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n
. .- _Hj (X t_1)

t=2 . d
diag (an-a) - N(o,Im) . (3.17).- :n o[n

n 7E{X iHj(Xt 2}]

t=2 --

It should be noted that we have asymptotic independence of the

estimates a), j=l,...,m, in the sense that the asymptotic covariance

matrix is diagonal. Moreover, taking (3.6) into consideration it is

seen that (3.17) may be rewritten as

I n 2d
diag [ Z E{X _lH (Xt)}]) N(0,IM) (3.18)

a. t=2td

which reduces to the familiar formula -nE(Xt)}/a - N(O,1) in the

0 ordinary (m=l) stationary AR(1) case.

The conditions stated in the theorem can be relaxed. For example

it is not necessary to require that the e 's are identically distributed.

It is not difficult to check that the above proof applies to the case

-. where the e 's are independent and zero-mean, and where m<E(e )<m

and E(e )< M' for some positive constants m, M and M'. It should also

* .l be noted that a similar nonstationary generalization can be made for

the exponential autoregressive model treated in Section 4.1 of TI.
The condition E{X H.(X )}> a. will be satisfied if the regions

tJ t - J

are chosen so that P (Xt F) > y. > 0 for some positive constants
ar o _

Yl'"...I and where P (Xt=O) # P (Xt c F.o) with F. being the region
0JO

containing 0. As an example where such conditions are satisfied

consider the case where {X e 2 P ...c are iid standard normal, where

there are only two regions FI= {x: x<0} and F = {x: x>O1, and

2

where a=0 and a 2 . Then P (Xt>O) > , while P (Xt <0) > y for some

*> 2.y>0, since E(X ) is uniformly bounded in t.

.% %.%0

• -_,V -.- "-. -,--..-.- .-.. v . ." ." ' ' -'.'.. '' '% ."-', ' ... : -. ':-;..'''-"'''';-
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3.2 Random coefficient autoregressive processes.

These processes were treated in considerable generality in the

stationary case in Sections 4.2 and 6 of Ti. Here we will restrict

ourselves to a scalar first order model. Extension to higher order

vector models involves the same principles, but is notationally more

complex.

We assume that [X t is given on --<t<- by

X - (a+b) Xt = et  (3.19)

where {e } and 1b } are zero-mean independent processes each consistingt t22
of independent variables such that m1 < E(e ) < M1 and E(b t) < M2P

* where m1 ,M  and M are positive constants such that a2 +M <1 These
1,1 2

b e
conditions guarantee that there exists a F vF - measurable solution

t t

of (3.19) with uniformly bounded second moments. This solution can

be expressed as

Xt = atiet_i (3.20)
i-i i=0

with a ti= (a+bt .) and where by definition ato=l
4. j =0

We consider the problem of estimating the parameter a. Since

0 Xt- = aXt_, it is clear that there is a unique solution to

n n
aQn/aa = 0 with Qn as in (2.2), namely an = xtxtil)/( 2 X _) assuming

that observations (Xl,...,X n) are available. It is our task to find

the properties of this estimate.

Theorem 3.2: Let {X } be as above. If in addition E(X ) < K for some7't t

constant K, then a - a.

Proof: It is easily seen that

2 X 2
f - E{(X -Xt )FrX g (321)

4'... t = h t)t "

% %4

- " . . . .

Q . '_ . '. .. " " ."e ' " j . %. e " " • % % . e " " - e ' e e - % 
''-

, - ' ' \ " - .L . " "." " "." • " 4" • " .4. . ."- " % -" " "



where ht  .(bt  and 1t C Thus

E t ,t f t I tI '_ (h t 2 1 t)  (3.22)
t a

is uniformly bounded in t and CNI of Theorem 2.1 is satisfied. The

conditions CN2 and CN4 are trivially satisfied since tit-,/aa=t_ 1

is independent of a. It remains to check CN3. This can be done using

martingale techniques analogous to those used in the proof of Theorem 3.1.

From (3.21) we have that {Wt } = {(b X, + e ) 2-(h X2_ + g+
t t t-1 t t t-Il

xis a martingale difference sequence with respect to {F }. Using our
V.. t

independence assumptions and the fact that uniform boundedness of E(X 
)

t
4 4

implies uniform boundedness of E(bt) and E(et) we have

E(W 2  E(b 4)E(X 4  + 4 E(X2  + E(e4  h2 4E(Xt-_ g2 <K (3.23)

for some constant K1 . From the martingale strong law we have

n a.s.
as 2 - 0s and thus, since btX + e = Xwe have

t=2
n n. 2a 2n n

1 _ j + a-I x 2  1 1_ h X 
2  .n a.s.

nt=i n t2 t-1 nt= 2 t t-1 n-I gt  0. (3.24)

On the other hand, {Vt I e ((Xt -t t l)Xt_ 1 } also forms a martingale

X 2
difference sequence with respect to {Fx } with E(V ) < C for some

*t t-2S
constant C2 and thus

n n a.s. o
x) lx X2 . (3.25)

2 2 -12

Since E(X is uniformly bounded, we have n X 0 as n oo, and
t n

combining (3.24) and (3.25) it follows that

"""-.(t2, 2 1 2 1 ~ .
(1 -a int x t - 1 -n t t 1 - n I 2g t  0

St=2 t__2 t2

:¢V
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Here h t O and Ial < 1. Hence

2- 1 n m
1r inf X x > (-a) i inf g 2 3.26)n-X-.I- n io t 2- (3 26

n -..o t=2 n - oo 1= -a 2,

and because Xtjt-l/ a = Xt-a, this shows that CN3 of Theorem 2.1 is

fulfilled and the theorem is proved. I

It should be noted (cf. Theorem 4.2 of TI) that in the stationary

case E{X2 } < -was sufficient to guarantee strong consistency of a

The condition E(X ) K used in the present theorem will be satisfied if
t

E(e4 )<C and E{(a + b ) 4} < C < 1 for two constants C and C It
t 1 t 2 1 2

2
was needed to obtain a uniform bound on E(Wt) in (3.23). Using

Corollary 3.3.5 of Stout (1974) it is possible to weaken this to requiring

a uniform upper bound on E{IW t(log+W ) for some e > 0.

As can be expected by analogy with the stationary case treated

in TI, boundedness conditions on higher order moments are needed to

ensure asymptotic normality.

8
Theorem 3.3: Let {X t } be as in Theorem 3.2. If in addition E(e ) s C1

8and E8(a < C2 < for two constants C1 and C a n is

asymptotically normal.

Proof: Using (3.22) it is seen that the quantity R of (2.8) is

nn!T~y given by
. n2

R n E{Xl (htX t + gt (3.27)
t=2

" " 2 t E e 2 2In view of (3.20) we have gtE(X ) > 2) gt 2 I and it

follows that DN1 of Theorem 2.2 is fulfilled.

Employing a subtraction-addition argument and the definition of

the quantities used in DN2 it is clear that DN2 will be fulfilled if

we can show that

P .

'.p- -.- _, ~ - -,,.,. ... • .. ,. .. '. '-".", -''L.'' ' ;.-- "- ." "-"/ '-,. '' '',.'.",".."""",.. .. *
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n n
" I nt (btX + e2 n E{X 2(ht a-s 0 (3.28)

This will be done in several steps.

First observe that the stated moment conditions on et and bt

8. imply by (3.20) that E(X t) < K1 for some constant K1V Clearly

{2b e X 3_ is a martingale difference sequence with respect to
t t t-

{F }, and since E(X6_) < K2 for some K2, it follows from the

martingale strong law that

. 1 n a.F.
- Y 2b-eX 0. (3.29)... n t=2 l

S{Xt(bt-ht)} define martingale difference

* 8
sequences and using E(X ) < K1 and the martingale strong law we have

2 a.s."1 n2 2 1 2~

n nt_ nt t-gt+ 0 (3.30)
t=2 t 2

and

n 2 n a.s..:.... It txlb t _2- xt~ h t - 0. (3.31)

t=2 t=2

Inserting (3.29) - (3.31) in (3.28) it is seen that to prove (3.28)

it is sufficient to prove

In 22 a.s.
- x l tI- E(X _)}gt - 0 (3.32)

and
" '" 1 n a.s.

4 4~

-n t4 - s}ht  0 (3.33)

- =2 2X - -

Let Yt = {X - E(X )}u where {u I is a positive deterministic
t t t t t

.4. sequence bounded above by some constant k and consider the sequence of

b e
1J-fields {F -o < t < o}, where F = FtvF . We will prove thatt't t t

{Y is a mixingale difference sequence with respect to {F}, i.e.

t% ... 4

,:-.. . . ..- 4
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(cf. Hall and Ifeyde 1980, p. 19) that for sequences of non-negative

constants ct and qj' where 's 0 as s - o, we have

2 2 2E[{E(Yt Ft )]< C (3.34i)

and
E[{Yt-E(YtjFts)}2] < ,2 .

~fs - s(YIFt (3.34ii)

for all t 1 and s 0 0. Since Y is F -measurable, the condition (ii)
t t

in the definition of a mixingale is trivially fulfilled for any choice

of c t  and ip S*

Using (3.20) and independence properties we have

2 2 i-I
tE(Xt) = E(ati)gt- i = [ [T E{(a +t_j)2gt i  (3.35)

i=O i=0 j=O

and for s > 0

2 s-1 i-i 2 O "
E(X t 5Ft_s) = [ T E{(a + btj) 2}gtJi+. Y E(a .a )e .e (3.36)

i=0 j=0 t=S j=s
44(

However, for ij -s we have
i-1 j-1 s-I

E(atatjFt) =a II (a+b )I (a+b )E{k I (a+b (3.37)
ti tj t5S k=s t-k M=S t-m k=O -

i- 1

where by definition R (a+btk) = 1 for 3=i. Combining (3.35 - 3.37) we
k=s

obtain
s- 2 co (2 i-i j-1

IE(YtIF) = lu E{ II (a b) }[ X YI (a+b _k)mI(a+bt )e te.
t tS t k=O tk i=s j=s k=s -m t-i j

2 i2 2 I 2 2
E{ F (a+bt )2gtiI< k(a +M2) ){X -E(X )}I (3.38)

i=s k=s

4 2and since E(X t) < K and a +M2<1 it follows that {Yt I is a mixingale

difference sequence. Moreover, it follows from the mixingale convergence

theorem (Hall and Heyde 1980, Th. 2.21) that (3.32) holds by choosing

ut =gt+l"

r-.. " -.. , - , *. , . .. . .
.. 4'.~il .4q %0 .** .~ . ~ 44- .- 4
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4 4
Next let Zt = {X - E(X t)}u . We will show that {Zt,F } defines

a mixingale difference sequence. Again the condition (ii) in the defi-

nition of a mixingale sequence is trivially fulfilled. Using (3.20)I:

and independence properties we have for s > 0

s-1 s-1 s-1 s-1
,,.'.' E(X~tl~t~ s )  1 2 3 4 ~ t 1 t 2 i i~tie-2 3ti

+[X IF [ E(at at at at e t__ ett_

i= s i=si=si=s i ti 2 ti13 ti 4 1t il 32 43 4
2 2 3'4

+Y I i0=15~. I iat i3at IF t)e_, e iet- -
*l 21 =s 3 4',S-1 00 00 9 E a2 t F e _'-'+ 3 1 1 til ti 1  ti ti4 tset i4

3il=O i3s i4s 13a

+3 3. ) E (a 3 a e )e (3.39)
2. i=Oi=s ti tS i

1 4 11 44

A corresponding splitting up of E(X 4) yields
t

s-1 s-i s-1 s-1?) ""._LE ('t , ilOti= 30 i= E(a til a ti 2a ti ati4 e t_il e ti2 et_i3 e ti4

Y=O i=0 i= 0i=0 1 2 3 4 1 2 3 4
1 2 3 4

' '5 + E(atilati at, at, et eti t_i et~4

"-]"., i=s I2=s 13= s 1i4=4s  2 3
1 2 3 145

s-1 2 2

+4, Ig. E(at. at.1 (3.40)

Since for ilpi i i > s, we have that
1'2' 3' 4-

..

V., %-

.. " %%
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,'."" ~atilti~at~ati4Ft~s)= 11 E F o(abt)4 (.l
1 2 3i 4r=l tJr=I (a+bt-Jr) j0 +btj) (.

it follows that

= i3s i4=s E(at t, ti a ti4 It-s et -l et-i2et-i 3  4

4 4s-1  s/2 4

E, I I(a+b X < C X (3.42)
j=()-0 -

Similarly for i < s-1 and i3, i > s we have

1 -l 1 -4-l'
i3 4 - 1  i1 - s-1

E(a a , Ft) = T[ (a+b TI (a+b)E J1 (abi 4 2 (3.43)
tij=s 

-  (a+b t_)

and

3 4 4 s-1
E(a.ti a t IF (ab=t (a+b T(a+bt) (3.44)

4lti4t-s . t j 0 a=1

It follows that

s-I 00 00 2

i=O i3=s i4=s t 1  3 t 4 1 t -s 4t - i 3e t -i4

s-1 s-i
~t~iE~j4 2- t~ 2~ sf4 2(&l b ) -I IT X < MSC2/t-s (3.45)= 0 gt-i g 1 ~ t-j) t- M1s ts ( . 5

i= j 0J=1

Moreover, since IE(e )I < M3 for some constant M3,
s- 3*s-1 00

y E(c3 ) E (at3 at. IF )e
t-i ti t s t-i

il= i4=s 1t4 41
1 4 1

3- s-I s/

E(el E I (a+btI)4  (a+bt) xt <_M sc2/aIXt 1 (3.46)

1 0  •j 0 .

C% %

C-

.: , ,,-- ,.'. ,'.-.,.. .. :.. ,' ..-.,.-. . -.-.-. .-.---..- , . .-.'- ..' : ... .'.'- .. . .- . .. .-. .. ... ., .'..'-
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Reasoning in an entirely analagous way fnr the two last terms on the

right hand side of (3.40) and inserting in (3.39) and (3.40) we have

S/ 4 4 /
EF(Z IF_ I < it[C f + E(X4  )I

t t- t 2 t s t-s

+ M sc2s/4x + E(X2 )} + M scS/8 x I] (3.47)
1) 2 t-s t-S .2 -',.. -t-s

8Since ut < k, E(X t < K1 and C2 < 1, it follows from the mixingale

convergence theorem with ut=ht+ 1 that (3.33) holds, and the theorem

is proved. [

Again it should be noted that in the stationary case (Ti, Th. 4.3)

4E(X ) < - is sufficient to guarantee asymptotic normality of an,

while in the present case we require E(Xt)< K.

3.3 Doubly stochastic processes.

Random coefficient autoregressive processes are special cases

of what we have termed doubly stochastic time series models in Tjostheim

(1983, 1984b). In the simplest first order case these are given by

X t  tl + e t  (3.48)

where {a+ b } of (3.19) now is replaced by a more general stochastic
t

process {0t}. The process {t I is usually assumed to be independent

of e t I and to he generated by a separate mechanism. Thus t} could

be a Nfarkov chain or it could itself be an AR process. We refer to

Tj~stheim (1983, 1984b) for a definition and properties in the general

case.

What makes doubly stochastic processes especially interesting,

is that in many cases it is possible to construct recursive forecasting

algorithms, and for the case where (0 t is an ARMA process, there is

a close connection with Kalman type dynamical state space models

V
:::]:. ....... ............... :

,: .. • .-.'.,..-.-.,....[.,.". ; . ".,,- '-'/v ..,.' .'.". ..:- .- "-f- ''.,''-& &&&&'' & :-'._,%' "''-'[". .' ''. -k ,. ,-"-,', -' ...'..'%.
: -%._ " *'A.. . _ -o-_" .J, ._'J ,'..." ._ q' ' ''. . ,"€" ' ,' ' : n o € -- a ,- - ="" " "", ,%%.'
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(cf. Harrison and Stevens 1976, Ledolter 1981 and Tj~stheim 1983).

This type of processes has attracted considerable attention lately,

and there exist procedures (see e.g. Ledolter 1981) for computation

of unknown parameters, but as far as we know there are no results

available concerning the properties of these estimates.

We will only consider a very special case, namely the case where

{f I is a first order MA process given by
= a t +bt, (3.49)

where {E I consists of zero-mean iid random variables independent of
t

2
{e } and with E(c ) < C. Both {e I and {e I will be assumed to be

t t t t

defined on - < t< o. We will only consider the estimation of a,

but we believe that even this simple problem gives a good illustration

of the increase in difficulties as we move away from random coefficient

autoregressive processes.

To be able to construct Kalman-like algorithms for the predictor

Xtlt-l, the process {Xt I must be conditional Gaussian and this requires

(Tj~stheim 1983) that {et I and et } be Gaussian, and that there is an

initial variable X such that the conditional distribution of 00

given X0 is Gaussian. This last requirement is achieved here by

choosing X0 = 0. Obviously it implies that {Xt}I is nonstationary.

Theorem 3.4: Let {Xt• t>l} be given by (3.48) and (3.49) under the

4
above stated assumptions. Assume that E(Xt) K for some constant K,

and that the MA parameter b is less than 1/2 in absolute value. Then
^ ^ a.s.

there exists a sequence of estimators {a I such that a a as
n n

n-o, and such that an is obtained by minimization of Qn in (2.2) as

* described in the conclusion of Theorem 2.1.

..

* ......o ", ". -, v. ' ., ', .' , ',%" v % -v -%'_." , .. .. . ...,- ........-'....'.,.,....-............,...........,......X
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xProof: We follow Tjostheim (1983) and use the notation mt=E(b% IFt) and

Yt E{bc-m ) 2 F X . Then it is easily shown from (3.48) and (3.49)

that under the stated assumptions we have

xtt = (a + m t 1 )X t.l (3.50)

Moreover, it was shown in Tj~stheim (1983) that X can be obtained
't~t-l

recursively from the relations

2
6 bXI( - aX t-m tX t1

= 2 (3.51)
a + X~ ( +y)

with 4

2 2
22b 2+x2 (2+Y(.2

YO E t £ ) 6 .It follows that the conditional prediction error is given by

fttl E{(Xt Xt )2 IF X_ = (62 + Yti)X 2_ + aT2  (3.S3)

From (3.50) and (3.51) we have

r1t- t-1.tlt-l - IX 1  (3.54)

and, since ytis independent of a,

2 2 
m t 1

(3.55)

3a G 2 +x2 (6 2+Y
*~~~~ Iaa+X~

while for k > 2
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k 62bX 2
m t t-1

- a +X 3al -0 (3.56)

Da a X2_ 62+ Y-

due to the initial condition m0=0. (It is also seen directly from

(3.51) that m~ depends linearly on a). It follow-- that CN2 and CN4

of Theorem 2.1 are trivially fulfilled.

Since y > 0 we have from (3.55) and the summation formula for

a finite geometric series that

-;t<JI1 + jDt- jbf -1---b- (3.57);a - Db a 1- bI

and it follows that jam /Dal is uniformly bounded. Similarly it* t
2 2

follows from (3.52) that y< 2b 6 . Using (3.53) and (3.54) it is now

seen that the condition E(X 4 < K implies that CNl of Theorem 2.1 is

fulfilled.

Since we assume that fbi < ,we have by (3.57) that I

aDm /al < Ibl /(l-lbl)<l and thus lim inf (I + ~M /aa) 2 >.Fo

(3.54) and the form of CN3 it is clear that to prove that CN3 holds,

4 it will be sufficient to prove that -

n a.s.
lim inf - t>0 (3.58)
n co t=l

Note that with our initial condion X =0 we have

* t-l
=t . ate~ (3.59)
iL=O

*A A
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where i-I i-I

it e = II (a + et- + bc ) (3.60)
j=0 j=0 -J t-j-1

2 2with a =. It follows at once that E(X ) > a , and thus (3.58) willto t

be proved if we can prove that

n n a.s.
n t  -n Y E ) 0. (3.61)
t=l ~

This will be done by using the mixingale strong law of large numbers.

Let Yt 2 E(X2) and Ft = Ftv FE . Then, Yt is Ft-measurable

and condition (3.34ii) in the definition of a mixingale difference

sequence is trivially fulfilled. Moreover, we have from (3.59) and

-. independence properties that for s - 0

2s-1 t- 2

E(Xt) .(a t +: E(a ., (3.62)

_ 1=sJ

where, by definition, the first sum is zero for s-O. It is not difficult

to show that
2s-1 t-I

E(2F j2 S- 2 Eta-E(XTIF t-s  Y E(ati) + 2 Y E(atiatsetiIF ts)et-si=0 i=0 t

t-1 t-l
+ E(a ta tjIFt  )e . (3.63)
i=s+l j=s+l tiatj - t-iet-i

For i < s we have

0 E{atiatset.iFt} = E[Efatiatet_ilF 1 IF s . (3.64)

But s-I j~ '; i-1a.s. ;

_,IF tsi t-1 t (aEt i+brt-i1 )e t-iIF t-i-l 0. (3.05)
... - -t"=

0.0

.::.

$16
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On the other hand for i > s

i-I s-2

SE{atI-} = et-(j t- )(a+ bt-s+l+be t-s 2t-s

i-1 [2a2 2 s-b 2 2 t Js) E  s-2s-2
et 11 0 )a+2abe +b )E( 11 e .)+2(a+bEt ) IT )t" j t-s t=O t- t-si
{j t =

s-2 i-I
1+ 11 -s A e jLf 0 )K~t,s) ,(3.00) a

=0t-J = + t-1 Js t.-3

and hence

t-1
E(atateI lFt- s)et s  e_sXK(t,s). (3.67)

i=O

Using similar arguments it is not difficult to show that

t-1 t-1
I E(a ta IjF )etet. = X sK(t,s) (3.68)

i=s+l j=s+l t tj t-s t-j t-s

Inserting in (3.62) and (3.63) we have

E(YtF2 = 2 - 2 =X 2 )K(t,s)

Ef tI t-s E(Xt IF t5) E(X t) (2e sX ts t-S)s )

-?.s-1 t-1 i-I

a2 E{-(fl~~ (3.69)
" " " 1 i = s j = s

Since E <(X K for some Kl , it follows from the proof of Theorem 4.2
t s-2

of Tj~stheim (1983) that there is a positive g<l such that E( 1182j=O -j

O(g S-1). Since E(X 4) < K implies the existence of constants K and K
t 2 3

such that E(e < K2 and E(Ct) < K3, it follows from (3.66) and (3.69)

that E[{E(YIF 2  (gs-1). We then have from the mixingale

convergence theorem (Hall and Heyde 1980, Th. 2.21) that (3.61) holds

and the theorem is proved. II

* .:'. .;2[.? - 4 .. ;%a-'. .: '4'V / ;, , a.T?-a-','.. b", . . . . . . .. a-* ', . a. .-': -*. -i .L-.. *, *'/
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The condition DN2 of Theorem 2.2 is not easy to work with for the

present example and we have not ventured to prove asymptotic normality.

. 3.4 Autoregressive models with deterministic time varying coefficients

" K Autoregressive models with deterministic time varying coefficients

have found applications in several areas, in particular in speech

recognition (cf. Markel and Gray 1977), and it is of interest to

develop a theory of inference for them. To our knowledge such a theory

is largely nonexistent. These models are usually classified as linear

nonstationary models so in a sense they fall outside the scope of this

paper. However, we will show that at least in special cases it is

possible to use the theoretical framework developed in this paper to

obtain properties of parameter estimates.

We only look at a first order model, although this is not an

essential restriction, and we assume that IX } is given for all t by

X-- a(t,a)Xt_1 = e t  (3.70)

2 2
where {e I consists of zero-mean iid variables with E(et) = 2

t
-.' and where a(",a) is a deterministic function depending on a scalar

parameter c. In this subsection we will use the superscript 0 to denote

" "'the true value of a.

Theorem 3.5: Let {X t  be given by (3.70), where a(t,a) is three times

continuously differentiable in an open set A containing the true value

a 0 of c. Assume that E(e 4) < -, and that there exist positive constants
t

m, M and g with g<l such that for all t
Sa(t, a)

-a(t,&' I < g and > m (3.71)

4._

.-
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and such that 3 <t(.2)

' 3 it'. < M (3.72)

for all t, a E A and i=0,1,2 and 3.

Then there exists a sequence of estimators {a} such that
n

A a.s. 0 "

a n  s' , and such that an is obtained by minimization of Qn in (2.2) .'>

as described in the conclusion of Theorem 2.1. Moreover, a is

asymptotically normal.

Proof: Using (3.72) we can express {X as a mean square and almost

sure convergent expansion
00

Xt  ioatieti (3.73)

i=0
i-I

with ato=l and a t= 11 a(t-j,a) for i > 0. Moreover, it follows from
tj= OPr

(3.71) and the mutual independence of the et's that
00 0

2) C2 1 0 2 a2
E(X ) = Iat.(aO )I < __ (3.74)i=O 1-g

From (3.70) and (3.73) we have that

x = and f (3.75)Xt~t_1  a t -Xt1  an tit-, " y

and since 9X= 3a (t,a)/i t.X it follows from (3.72), •

(3.74) and (3.75) that CNI and CN2 of Theorem 2.1 are fulfilled.

Considering the expression in CN4 of Theorem 2.1, it is seen that

: by the mean value theorem and (3.72) it is sufficient to prove

1 2 s.
nli sup 1 tXt < (3.76)n t (3.76)
n oo

a,

Daa

"a , a'',..,,,.+ ,..,- ' W W mkd l-all~il ..
% % % %
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.. in order to have CN4 satisfied. On the other hand from the equality

part of (3.74) we have E(X ) > 02, and using (3.71) and the inequality
*t.

V. part of (3.74) it follows that both CN3 and CN4 of Theorem 2.1 will be

fulfilled if we can prove

Sn n a.s.
1 2 _ I E(X2 ) 0. (3.77)

" n t 1 t -n t=l

But for s > 0 we can use (3.73) and (3.74) to show that for Yt=x (x
t rt(

we have

E(Y IF s 1 
2a(t-i )} - E(X ) (3.78).,-:z'" E( t t s) 

=  a(-~){t- s  -  s

It now follows from (3.71), (3.73) and E(ct4) < ~,that there is a K

4
such that E(X ) < K for all t. Hence, by (3.71) and (3.78) we have

t
""{E(Y e) } 2] g2SK1 fos

E[{E(YtIFts) < for some K1, and the mixingale convergence

theorem implies (3.77). The consistency part of the theorem follows

-. . - from Theorem 2.1.

The quantity Rn defined in (2.8) and used in the proof of

asymptotic normality is given in our case by

s.0 2
n Da(t,cz 2

R = a2t E(X ) (3.79)
n t=2 3a t-

02 2
and it follows at once from E(X t > a and the last part of (3.71)t -

that DN1 of Theorem 2.2 is fulfilled. To show that DN2 oi'that theorem

holds it is clearly sufficient to show that

S...(t, 2 2 1 = Io E(X a s. (3 80)
1 -* 0.x(.0n'.' C t 2 tt' _ -n

.2We let Zt22 _ a2E(0) 2 2 ) Then using (3.73)
=. * et- t I  t 1 I

% "-6 4 .
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and (3.74) and independence properties of {e t  it is not difficult to

show that
0

e = aa(t,ct a2 2 (tl,,aO {2 X2E(ZtIFts) = 2 - ){X E( ). (3.81)
i=o

From (3.71), (3.72) and E(X ) < K it follows that E[{E(Z IFe_ )}2]

g2SMo 2K for some K and the mixingale convergence theorem implies1 1'

(3.80). The proof is now concluded by applying Theorem 2.2.

It should be realized that the conditions (3.71) and (3.72) are

quite restrictive. Thus it is not completely nontrivial to find

explicit examples of functions satisfying these requirements.

3.5 Other models

We could of course consider nonstationary versions of bilinear

models. But we still face the same obstacles as in the stationary

case (cf. Section 4.3 of Tl), and again it seems that more progress

has to be made on the problem of invertibility before serious analysis

of estimates can be undertaken in the present framework.

For the model studied by Aase (1983), however, our theory is

applicable and the conditions CNl-CN4 and DNl-DN2 results in conditions

which are similar to his, although he considers some slightly

different estimates.

4. A maximum likelihood type penalty function.

The maximum likelihood type penalty function was studied in Section

5.1 of Tl and is given in the multivariate case as

n -* n 
L = t [ ln{det(ft t-l)}+(xt-xt(tAl)A - " (4.1)

n t=m+1 ~ - -Xttl ttlt ~- t=m~l

J4I

.5 .5
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The resemblance to a Gaussian log likelihood and the martingale

property of Ln was discussed in T1. If Xt-Xtl is not independent

of F minimization of L will in general produce estimates witht-l n

different properties from those obtained using conditional least squares

with Qn as in (2.2). This is the case for doubly stochastic time

series models and in particular for random coefficient autoregressive

series.

Corresponding to Theorem 5.1 of Ti and Theorem 2.1 of the present

paper we have

Theorem 4.1: Assume that {XttEI} is a d-dimensional process with

E{tXt 12 } < - for tEI and such that X t~tl( ) and ftlt-l(a) are almost surely

twice continuously differentiable in an open set B containing B . Moreover,

assume that there are positive constants M and M such that for

.4. t > m+l

4t 0i- ENR E, - 0 )  _ m

-.J
and

°" t 0 t 0 X
-% . EN2 : E -- 8 ) I t_ 1  < M 2

- for i,j=l,...,s, and where expressions for these derivatives

are given in (5.8) and (5.9) of Ti.

Furthermore, we assume

*n 0a S.
EN3: lim inf Xm (N0) a 0-.- n oo mi

n 0

where X ( is the smallest eigenvalue of the symmetricmnn
4.

S- . . ' . ' . . . ' j . . . . .' . . ' . ' ' . . .' % . '.' . . - .. % . . % . % , . % % ' j . ' J . .. ' 2 . .. .
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nO0

matrix C (BO) with matrix elements given by

+2 t 0 f -ti 0) U'ft-11 (4.2)

EN4: Let N f-: 16-3 01 < 6} be contained in B. Then

1 n 0 aS

+ i(n) t J_ 8 ( 0) (4.2)

lim sup (n6)- } (6) ( U
n-)co 64,0 t=m+l3a i 3S Bij 36

for i,j = 1,....,s.

Then there exists a sequence of estimators {a } minimizing Ln n

of (4.1) such that the conclusion of Theorem 2.1 holds.

Proof: As in the proof of Theorem 2.1 our proof consists in referring

our stated conditions back to the conditions of Theorem 2.1 of T1.
at- X

From Proposition 5.1 of Ti we have that - F t } is a martingalep.. 1

difference sequence, and from a version of the martingale strong law

(Stout 1974, Th.3.3.8) it follows from ENI that n-DL (a )/a.a- s'.o
n

as n - o, and Al of Theorem 2.1 of TI is fulfilled.

The sequence (6)/n - E{ t(B°)/a IF ], Ft }

is trivially a martingale difference sequence, and EN2 implies via the

just quoted law of large numbers that

I n 0 a' t 0 X
------ (8 -i E- Rf( )IF - 0 0. (4.3)

, On the other hand from (5.11) of TI we have that

* IN

OR pr e '
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t=m+l t_ ij( 0 ) with cn( 0) as in (4.2).

It follows from (5.12) of Ti that C n( 0 ) is non-negative definite and

A2 of Theorem 2.1 of TI now follows from EN3 and (4.3). Finally, EN4

is just a restatement of A3 of Theorem 2.1 of Ti. II

As for Theorem 2.1 the conditions ENI and EN2 may be weakened.

We next turn to asymptotic normality and to the analogs of Theorems

5.2 of Ti and 2.2 of the present paper. We let S', R' and T' be the
n1 n n

matrices defined by

n DOt D¢t
St = S . = [ (4.4)

n n, ij 6 38.
t=m+1

n
T ' J = E(S'ij. = E[ -_' (4.5)

n n,ij n,ij) = t M ~ M * i

andi
R nC1 n IFx (4.6)

n nij iJ -

Here expressions for 3 /3 and E( /DB S t/ .) are given in (5.8)
t 1 t 1it j

and (5.18) of Ti and for Cn in (4.2).

Theorem 4.2: Assume that the conditions of Theorem 4.1 are fulfilled

0" and assumt. in addition that

-s 0
FNI: lim inf n-  det {Rn( } > 0

-..-

and

FN2: {Rn(13} 2 Sn('O){Rn(3)} I•
n n n s

Let {6n } be the estimators obtained in Theorem 4.1. Then
n

* {RA1(6")}I2 TA(a" (anS -a N(0,1.

S%."

• -- " .....-. ,'. -"N -.. ,
P,-i 41 . - 4C-/
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Proof: This is essentially identical to the proof of Theorem 2.1 and

ois therefore omitted.

5. Two examples.

In Section 6 of Tl it was seen that in the stationary case it

was possible to weaken the conditions on the moments of random coefficient

autoregressive processes when the maximum likelihood type penalty

function was used. The following examples indicate that this continues

to hold true for nonstationary doubly stochastic processes. Only

consistency will be studied, and the superscript 0 for true values will

be dropped.

*5.1 A random coefficient autoregressive process.

We will study the first order model given by (3.19), but now we

will make the assumption that E(bt) = y > 0 is a constant, and we will

consider the problem of estimating both a and y.

2
Theorem 5.1: Let {Xt I be as in (3.19) with E(b ) = y. Assume that

there exist two positive constants m1 and M such that m 2<E(e )<M

2 ^
and that a + y < 1. Then there exists a sequence of estimators {[aY]} such

a.s.
that {[an, y]} - [a,y] and such that [an,yn] is obtained by minimization

of L in (4.1) as described in the conclusion of Theorem 2.1.n

Proof: For the process treated in this theorem we have that 4 defined
t..:S

in (4.1) is given by

"*' Ct = ln(ftlt-) + (Xt XtI (5.1)
2 2

where Xtjt = aXt_ l andf = YXt-I + t with gt 2E(e We

have

Ie= . 2(Xt aXt )/f" '"-a /ft t-l tl (5.2)

I.n

...
,..,
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and

-':(i aqt 1 ft 1- 2 1 ftjt-1 53t'" - ayt~ - (Xt-aXt 1) 2 (3)

tjt-ltftal
'. :"- iaY f lt-1tit-1

Here 1/f1t jt l < l/gt < 1/ml, while

1 _ ft I t-l t-l 1 (54)

- tlt-l Y X2  -+ gY t-1 gt

Using similar arguments (cf. also Section 6 of TI) it is not

difficult to show that the expectation of the absolute values of the

first and second order derivatives of tt with respect to a and y aret

bounded by K1E(X2) where K is a constant. However, using independence1 t 1
properties of {b } and {e I it is seen from (3.20) that

t t
i 2

00 <(1- Y
22 J. -ay

ai=O g > (1-a2  -1 lm(

2
where we have also used a +y<l. It follows that EN1 and EN2 of

Theorem 4.1 are fulfilled.

Since y0 and a-+y<l, there exists an open set B that contains

"- . the true parameter vector, and is such that the closure of B in

the parameter space do not contain y = 0 and a + y = 1. Using the

S- martingale law of large numbers it is not difficult to show that

there is a constant K such that

2

1 n (bX + e) a.s.
lim sup I t tt-l t < K (5.6)

n 2S- t=2 yXt 1 + g

when a and y are contained in B. Using this result in combination with

the above majorzations and with the expression for the third order

derivatives (cf. formula (6.8) of TI) we have that EN4 follows from

the mean value theorem.

' It remains to check EN3. Since f tt-1 does not depend on a, while

n

X does not depend on y, then the matrix Cn of EN3 is given by

the diagonal matrix

• , . '- % , . . ° " " ', -' *"."." **- o" %*** ," - .o - - % y.4  .-- - .. . r ' '
,,..,-.,-, ..,-, ,,,...,, .-. x
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FnTI 2X_

2 0
t=2 yX 1 +

Cn 1 (5.7)n X4

nt-1
-t=2 (yXt_ 1 + gt

2j

Assume that there is a subsequence indexed by ni such that as

n. + C then

I i 2X
2  a.s.

-n 20. (5.8).,:it=2YX - + gt
It-2 t- 1

Since 2X 1/(yX2 1 + g t < 2y-1  we can use dominated convergence

to show

""'n ,*- ~ -

n t=2 YXt-1 + gt

as n. co o. However, from (5.5) we have that E(X2) is bounded uniformly

from below, and it follows that there exists a 6 > 0 such that

P X > ml(1-a 2 -y 1  > 6, with m1 as in (5.5). Moreover, the ratio

2x/(yx + gt) is monotonically increasing in x > 0, so that

* r 2 (l~2 -1• ~2X 2m1 (1_ 2,1 -

E 2X >-1 (S.10)
YX- + gt (1 -y) + M

for all t, where M1 is as in (5.5). But this contradicts (5.9) and

we must have

n 21 n t- a. s.
li inf C 11  lim -nf 2 > s

n -),n t=2 YXt-+ gt

n a.s.It follows using tke same argument that lim inf C22 O, and the
It2 n too

V-.

% V

TI:
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condition EN3 of Theorem 4.1 is verified. I
5.2 A doubly stochastic process

We will only treat the simple example studied in Theorem 3.4.

Theorem 5.2: Let {Xt , t > 11 be as in Theorem 3.4 with the exception

that we replace the condition E(X4) < K with the weaker condition

E(X 2) < K for some K. Then there exists a sequence of estimators
t

fa } such that a a4s. a and such that a is obtained by minimizationn n n

of L in (4.1) as described in the conclusion of Theorem 2.1.

Proof: Again we have that the functional form of t is given by (5.1),

but now with Xt1t_ I and ftjt- l given by (3.50) and (3.53). It follows

that

t= -2{X - (a+mt)X 1 + Xt/f (5.12)

3a

and using the fact that m /9a= 0 for k > 1 we have

S."Xt/ftlt
1  E ( (5.13)

while higher order derivatives of t are zero. From (3.53) we have
t• . 1/ftt_

1t/f < 1/0 2. On the other hand it was proved in the proof of

Theorem 3.4 that jamt_1 /3aI is bounded above by a constant independent
2 2.

of t, and since E(Xt - X t < E(X ), it now follows that

" E(Ipt /3al) < K1 for some constant K Thus condition EN1 of Theorem

4.1 holds. Conditions EN2 and EN4 are trivially satisfied and it

remains to verify EN3.

v . n
The matrix C of EN3 in this case reduces to a scalar, namely

0.
.7

.. . ... . . . .

.. . ...... ,. . .... . ; _, _ * _ -. , --Z . -- : .-* 'j, q -.• .. -' .-

_ ,.* 'p v;-.'r -i -* * m--*
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c'% J 2  ) 2 X_2
E 
__ 

1 + 
(5.14)

= 1[- a IF -I I -t = -- - - 2 +y - ) X- +
n t 2 a2 t nt2 43 6+ X2 2

It was established in the proof of Theorem 3.4 that

2 as. 2 2
lim inf (1 + am/;a) > 0 and that Yt < 2b 6 . Reasoning in the

.t -

same way as in the last part of the proof of Theorem 5.1 it is concluded

that lim inf Can  > 0, and the theorem is proved.

n

Unfortunately we have not been able to prove asymptotic normality

for any of the two examples treated here. The difficulty lies in

verifying condition FN2 of Theorem 4.2.

6. Summary remarks

In this paper as well as in TI we have developed a general frame-

work for analyzing estimates in nonlinear time series models. We have

given applications to a number of different model classes and tried
S.1

to deduce sufficient conditions for strong consistency and asymptotic

normality from the general conditions. Our conditions reduce to the

. standard set of conditions (cf. Fuller 1976, Ch. 8) in the linear case,

except that we do not necessarily require a homogeneous residual

process fe t }.

2
Explosive behavior, e.g. E(X ) increases as an exponential

t

function of t as t -* o, is not permitted in the present set up. It

should be noted, however, that Lai and Wei (1982, 1983) have recently

proved consistency, hut not asymptotic normality, of parameter estimates

S. in linear explosive models. It is sometimes difficult to find conditions

*. guaranteeing nonexplosive behavior for nonlinear models, and it is

therefore a challenging task to try to extend Lai and Wei's results

.1- .- %.%V%

",..
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to nonlinear series.

Our work has potential applications in several other directions.

- One would be to extend our results to more general classes of examples,

especially in the doubly stochastic case. Another important problem

is that of hypothesis testing, in particular in connection with

*.-" empirical identification of models.

I% %
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